« キネマ航空CEO 「高バイパス比化に意味があるの ?」 について考えるの巻(再掲) | トップページ | キネマ航空CEO 『GTF のまとめにかかる』の巻(その 2) と 夏季特集 2 題 »

2018年7月15日 (日)

キネマ航空CEO 『GTF のまとめにかかる』の巻(その 1)

 (承前)

 ターボ・ファンは、『工学的には、本質的に発生の原理が異なる「運動量理論」による流速と「翼素理論」の範疇にある空力機械としてのファンの流速を限りなく音速に近づけることで得られる亜音速の上限をカバーする空力推進技術の相互補完メカニズム』とまとめられる。

 GTF を考えてみると、結局のところ一段の減速比しか無い減速機の追加ではあるがエンジンの回転数を最適化することで燃焼状態を改善する自動車のマニュアル・トランスミッションと同じ機能が使われている。

 推進技術に限らないがエネルギーにかかわるメカニズムの評価には効率の良否(よしあし)が関係する。民生用ならなおさらである。

 当ブログでもターボ・ジェットの運動量理論とファン(プロペラ)の翼素理論の推進効率の解析から 比較の可視化 を行っている。

 その記事から左クリックでポップ・アップできる比較グラフを再掲する。

Efficiency_of_propulsion ターボ・ジェットではどんなエンジンでも同じ数式で同じ曲線になる。

 いっぽう、プロペラでは寸法からは直径、翼型からは揚抗比、エンジンからでは回転数、さらにエンジンの出力と機体で決まる機速等々で大きく変わる。

 グラフの曲線は中(あた)らずとも遠からずといったレベルではあるが一応はどちらも理論から誘導している。しかし、アンダクテッド・プロペラである。

 当CEO は残念ながらターボ・ファン・エンジンのダクトを理論的に解説をした参考書には出会えていない。

 出会っていても断熱圧縮を伴うため、まともな解説はできそうにないので、下の参考書からダクテッド・プロペラの概説を強引に引用して納得してもらうしかない。
(ただし参考書のダクトファンとターボ・ファンのダクトとは設計意図が異なっており、デフューザー効果を伴わないダクテッド・プロペラの範疇に入る) 

飛行機設計論」山名正夫、中口 博  養賢堂 (1968)  pp388 、(5) ダクトファンより引用

・・・筒がない場合に比べて
   (a) 同じ直径のとき静止推力および吸収馬力が大きい
   (b) プロペラ先端と円筒内面との隙間を小さくすると、先端渦による誘導馬力損失が
       少ない
   (c) v/nD の大きな変化に対しプロペラ効率の変化が少ないなどの利点がある。

(以下)理論計算式の展開のあと
・・・ 飛行速度とともに筒の効果が減少する。
・・・ 実際には筒の摩擦抵抗が加わるから v0 (飛行速度)が大きいときには筒の存在がかえって有害となってくる。
・・・ (筒の)前縁推力を出すためには・・・ v0 によって(筒の)最適の形、とくに前縁部の形が違(う)
・・・ もともと、低速時の推力を増すために曳船用の推進装置として考案された
・・・ 筒の形については(参考文献を列記)・・・と続く。
   ( )内は当CEO の加筆。 以上、参考書では V/STOL の章にあります。民生用ドローンの設計者必読かな ?

 以上の所見からは、当CEOが可視化したプロペラのグラフは、速度比 0 から 1 にかけて漸減して 1 になるような係数を乗じる補正が必要と考えられる。

 また、速度比 0 の場合の補正係数はいくつかの実験式や理論計算式で 1 以上であることは間違いない。

 ターボ・ファンのダクトでも同様の補正が必要と考えられるが参考書の数値はそのまま使えそうにない。

 したがいプロペラの効率のカーブは次のような想像力で、しかも読者にもカバーしていただくしかない。

  (イ) 二つの効率の曲線の交点より左側(速度比 0 の側)では速度比 0 の効率は 0 のままで膨らみ逆立ちした放物線が傾いた形になる。
  (ロ) 効率のピーク値はより 1 に近づくかもしれない
(でもダクトの形状抵抗で実装状態では相殺されるかも)。さらにピークは速度比の小さい側に僅かだろうが移動するかもしれない。

 以下、上記の予測される補正はしないで先に挙げたターボ・ファンの効率のグラフを元に下式を使って加工した結果に上記の所見を加味して考察する。いや、してもらう!

 なお、基にするグラフの設定条件は機体の抵抗も含めてファンのモーメンタム・フローとコア・ジェットのジェット・ブラストの速度とが等しいこと、かつ基準としたエネルギーも等しいという前提です。

 ターボ・ファンのバイパス比 q : 1 、推進効率 ηTF 、プロペラの推進効率 ηP 、コア・エンジンの推進効率 ηJ とする。

       ηTF = {q/(q + 1)}* ηP + { 1/(q + 1)}*ηJ = (ηP * q+ ηJ )/(q + 1)

 つまり、一つのエンジンを同じ最高速で飛べるファンとジェットの二つの独立したエンジンにして一つの機体に搭載し、それぞれのエンジンが分担する効率をバイパス比で分割してさらに合計した値です。

 ターボ・プロップとターボ・ジェットの組み合わせでは 川崎 P2-J がありました。
 モーメンタム・フローとのジェット・ブラストの速度とが等しいかどうかは分かりません。
 たしか緊急時加速用補助エンジンのはずでジェット・ブラストのほうが速いと思われる。
 効率は悪いだろうけど民生用ではないからなー。しかもパートタイマーだし。
 そんなにメジャーなブログでもないけど間違っていれば炎上するだろうなー。
Turbofan_w_samespeed

 当たり前のことながら、両効率曲線の交点より右側(高速)では ηJ > ηTF > ηPq が小さいほどターボ・ファンの効率は良い。

 逆に、交点より左側(低速)では ηP > ηTF > ηJ でバイパス比 q が大きいほどターボ・ファンの効率は良い。

 ただ、どちらの場合でも q が大きくなるほど ηTF の差がほとんどなくなる。

 ただし、プロペラのダクトとターボ・ファンのダクトは機能構造が異なりバイパス比  q の関数で効率がよくなる可能性はあるかも知れない。

 あったとしてもエネルギーの分配という面では差は小さいのではないかと思える。

 バイパス比  q といえば速度比によって変化するのではないかとの疑問は当CEO の中でも解消されていない。

 呼称値である q の定義自体は明確だが実態は定かではない。

 当CEO の当面の進行は、個別の型式間の呼称値としての q の影響は型式間の比較の上では類似または近似するとの前提であります。

-------------------------------------

 さて、次回は モーメンタム・フロー > ジェット・ブラスト となる速度差の影響は、について考えるのココロだー!

« キネマ航空CEO 「高バイパス比化に意味があるの ?」 について考えるの巻(再掲) | トップページ | キネマ航空CEO 『GTF のまとめにかかる』の巻(その 2) と 夏季特集 2 題 »

MRJ」カテゴリの記事

コメント

コメントを書く

(ウェブ上には掲載しません)

トラックバック

この記事のトラックバックURL:
http://app.cocolog-nifty.com/t/trackback/570012/66939065

この記事へのトラックバック一覧です: キネマ航空CEO 『GTF のまとめにかかる』の巻(その 1):

« キネマ航空CEO 「高バイパス比化に意味があるの ?」 について考えるの巻(再掲) | トップページ | キネマ航空CEO 『GTF のまとめにかかる』の巻(その 2) と 夏季特集 2 題 »

2018年10月
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31